direct product, metabelian, soluble, monomial, A-group
Aliases: C4×C22⋊A4, C24⋊6C12, C25.4C6, C22⋊(C4×A4), (C24×C4)⋊2C3, (C22×C4)⋊4A4, C23.21(C2×A4), C2.1(C2×C22⋊A4), (C2×C22⋊A4).3C2, SmallGroup(192,1505)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C24 — C25 — C2×C22⋊A4 — C4×C22⋊A4 |
C24 — C4×C22⋊A4 |
Generators and relations for C4×C22⋊A4
G = < a,b,c,d,e,f | a4=b2=c2=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, fcf-1=b, fdf-1=de=ed, fef-1=d >
Subgroups: 792 in 262 conjugacy classes, 24 normal (9 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C2×C4, C23, C23, C12, A4, C22×C4, C22×C4, C24, C24, C2×A4, C23×C4, C25, C4×A4, C22⋊A4, C24×C4, C2×C22⋊A4, C4×C22⋊A4
Quotients: C1, C2, C3, C4, C6, C12, A4, C2×A4, C4×A4, C22⋊A4, C2×C22⋊A4, C4×C22⋊A4
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 9)(2 10)(3 11)(4 12)(5 7)(6 8)(13 15)(14 16)(17 21)(18 22)(19 23)(20 24)
(1 11)(2 12)(3 9)(4 10)(5 14)(6 15)(7 16)(8 13)(17 19)(18 20)(21 23)(22 24)
(1 11)(2 12)(3 9)(4 10)(5 16)(6 13)(7 14)(8 15)
(5 16)(6 13)(7 14)(8 15)(17 21)(18 22)(19 23)(20 24)
(1 6 19)(2 7 20)(3 8 17)(4 5 18)(9 15 21)(10 16 22)(11 13 23)(12 14 24)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,9)(2,10)(3,11)(4,12)(5,7)(6,8)(13,15)(14,16)(17,21)(18,22)(19,23)(20,24), (1,11)(2,12)(3,9)(4,10)(5,14)(6,15)(7,16)(8,13)(17,19)(18,20)(21,23)(22,24), (1,11)(2,12)(3,9)(4,10)(5,16)(6,13)(7,14)(8,15), (5,16)(6,13)(7,14)(8,15)(17,21)(18,22)(19,23)(20,24), (1,6,19)(2,7,20)(3,8,17)(4,5,18)(9,15,21)(10,16,22)(11,13,23)(12,14,24)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,9)(2,10)(3,11)(4,12)(5,7)(6,8)(13,15)(14,16)(17,21)(18,22)(19,23)(20,24), (1,11)(2,12)(3,9)(4,10)(5,14)(6,15)(7,16)(8,13)(17,19)(18,20)(21,23)(22,24), (1,11)(2,12)(3,9)(4,10)(5,16)(6,13)(7,14)(8,15), (5,16)(6,13)(7,14)(8,15)(17,21)(18,22)(19,23)(20,24), (1,6,19)(2,7,20)(3,8,17)(4,5,18)(9,15,21)(10,16,22)(11,13,23)(12,14,24) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,9),(2,10),(3,11),(4,12),(5,7),(6,8),(13,15),(14,16),(17,21),(18,22),(19,23),(20,24)], [(1,11),(2,12),(3,9),(4,10),(5,14),(6,15),(7,16),(8,13),(17,19),(18,20),(21,23),(22,24)], [(1,11),(2,12),(3,9),(4,10),(5,16),(6,13),(7,14),(8,15)], [(5,16),(6,13),(7,14),(8,15),(17,21),(18,22),(19,23),(20,24)], [(1,6,19),(2,7,20),(3,8,17),(4,5,18),(9,15,21),(10,16,22),(11,13,23),(12,14,24)]])
G:=TransitiveGroup(24,385);
32 conjugacy classes
class | 1 | 2A | 2B | ··· | 2K | 3A | 3B | 4A | 4B | 4C | ··· | 4L | 6A | 6B | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | ··· | 2 | 3 | 3 | 4 | 4 | 4 | ··· | 4 | 6 | 6 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 3 | ··· | 3 | 16 | 16 | 1 | 1 | 3 | ··· | 3 | 16 | 16 | 16 | 16 | 16 | 16 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 |
type | + | + | + | + | |||||
image | C1 | C2 | C3 | C4 | C6 | C12 | A4 | C2×A4 | C4×A4 |
kernel | C4×C22⋊A4 | C2×C22⋊A4 | C24×C4 | C22⋊A4 | C25 | C24 | C22×C4 | C23 | C22 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 5 | 5 | 10 |
Matrix representation of C4×C22⋊A4 ►in GL6(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0] >;
C4×C22⋊A4 in GAP, Magma, Sage, TeX
C_4\times C_2^2\rtimes A_4
% in TeX
G:=Group("C4xC2^2:A4");
// GroupNames label
G:=SmallGroup(192,1505);
// by ID
G=gap.SmallGroup(192,1505);
# by ID
G:=PCGroup([7,-2,-3,-2,-2,2,-2,2,42,346,641,2028,3541]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^4=b^2=c^2=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,f*c*f^-1=b,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations